3.11.10 \(\int \sqrt {1-x} (1+x)^{3/2} \, dx\)

Optimal. Leaf size=48 \[ -\frac {1}{3} (1-x)^{3/2} (x+1)^{3/2}+\frac {1}{2} \sqrt {1-x} x \sqrt {x+1}+\frac {1}{2} \sin ^{-1}(x) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {49, 38, 41, 216} \begin {gather*} -\frac {1}{3} (1-x)^{3/2} (x+1)^{3/2}+\frac {1}{2} \sqrt {1-x} x \sqrt {x+1}+\frac {1}{2} \sin ^{-1}(x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - x]*(1 + x)^(3/2),x]

[Out]

(Sqrt[1 - x]*x*Sqrt[1 + x])/2 - ((1 - x)^(3/2)*(1 + x)^(3/2))/3 + ArcSin[x]/2

Rule 38

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(x*(a + b*x)^m*(c + d*x)^m)/(2*m + 1)
, x] + Dist[(2*a*c*m)/(2*m + 1), Int[(a + b*x)^(m - 1)*(c + d*x)^(m - 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 49

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*(m
 + n + 1)), x] + Dist[(2*c*n)/(m + n + 1), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x]
 && EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0] && IGtQ[n + 1/2, 0] && LtQ[m, n]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int \sqrt {1-x} (1+x)^{3/2} \, dx &=-\frac {1}{3} (1-x)^{3/2} (1+x)^{3/2}+\int \sqrt {1-x} \sqrt {1+x} \, dx\\ &=\frac {1}{2} \sqrt {1-x} x \sqrt {1+x}-\frac {1}{3} (1-x)^{3/2} (1+x)^{3/2}+\frac {1}{2} \int \frac {1}{\sqrt {1-x} \sqrt {1+x}} \, dx\\ &=\frac {1}{2} \sqrt {1-x} x \sqrt {1+x}-\frac {1}{3} (1-x)^{3/2} (1+x)^{3/2}+\frac {1}{2} \int \frac {1}{\sqrt {1-x^2}} \, dx\\ &=\frac {1}{2} \sqrt {1-x} x \sqrt {1+x}-\frac {1}{3} (1-x)^{3/2} (1+x)^{3/2}+\frac {1}{2} \sin ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 44, normalized size = 0.92 \begin {gather*} \frac {1}{6} \sqrt {1-x^2} \left (2 x^2+3 x-2\right )-\sin ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {2}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - x]*(1 + x)^(3/2),x]

[Out]

(Sqrt[1 - x^2]*(-2 + 3*x + 2*x^2))/6 - ArcSin[Sqrt[1 - x]/Sqrt[2]]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.07, size = 95, normalized size = 1.98 \begin {gather*} \frac {-\frac {3 (1-x)^{5/2}}{(x+1)^{5/2}}-\frac {8 (1-x)^{3/2}}{(x+1)^{3/2}}+\frac {3 \sqrt {1-x}}{\sqrt {x+1}}}{3 \left (\frac {1-x}{x+1}+1\right )^3}-\tan ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {x+1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[1 - x]*(1 + x)^(3/2),x]

[Out]

((-3*(1 - x)^(5/2))/(1 + x)^(5/2) - (8*(1 - x)^(3/2))/(1 + x)^(3/2) + (3*Sqrt[1 - x])/Sqrt[1 + x])/(3*(1 + (1
- x)/(1 + x))^3) - ArcTan[Sqrt[1 - x]/Sqrt[1 + x]]

________________________________________________________________________________________

fricas [A]  time = 1.28, size = 47, normalized size = 0.98 \begin {gather*} \frac {1}{6} \, {\left (2 \, x^{2} + 3 \, x - 2\right )} \sqrt {x + 1} \sqrt {-x + 1} - \arctan \left (\frac {\sqrt {x + 1} \sqrt {-x + 1} - 1}{x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)^(1/2)*(1+x)^(3/2),x, algorithm="fricas")

[Out]

1/6*(2*x^2 + 3*x - 2)*sqrt(x + 1)*sqrt(-x + 1) - arctan((sqrt(x + 1)*sqrt(-x + 1) - 1)/x)

________________________________________________________________________________________

giac [A]  time = 0.92, size = 66, normalized size = 1.38 \begin {gather*} \frac {1}{6} \, {\left ({\left (2 \, x - 5\right )} {\left (x + 1\right )} + 9\right )} \sqrt {x + 1} \sqrt {-x + 1} + \sqrt {x + 1} {\left (x - 2\right )} \sqrt {-x + 1} + \sqrt {x + 1} \sqrt {-x + 1} + \arcsin \left (\frac {1}{2} \, \sqrt {2} \sqrt {x + 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)^(1/2)*(1+x)^(3/2),x, algorithm="giac")

[Out]

1/6*((2*x - 5)*(x + 1) + 9)*sqrt(x + 1)*sqrt(-x + 1) + sqrt(x + 1)*(x - 2)*sqrt(-x + 1) + sqrt(x + 1)*sqrt(-x
+ 1) + arcsin(1/2*sqrt(2)*sqrt(x + 1))

________________________________________________________________________________________

maple [B]  time = 0.01, size = 71, normalized size = 1.48 \begin {gather*} \frac {\sqrt {\left (x +1\right ) \left (-x +1\right )}\, \arcsin \relax (x )}{2 \sqrt {x +1}\, \sqrt {-x +1}}+\frac {\sqrt {-x +1}\, \left (x +1\right )^{\frac {5}{2}}}{3}-\frac {\sqrt {-x +1}\, \left (x +1\right )^{\frac {3}{2}}}{6}-\frac {\sqrt {-x +1}\, \sqrt {x +1}}{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x+1)^(1/2)*(x+1)^(3/2),x)

[Out]

1/3*(-x+1)^(1/2)*(x+1)^(5/2)-1/6*(-x+1)^(1/2)*(x+1)^(3/2)-1/2*(-x+1)^(1/2)*(x+1)^(1/2)+1/2*((x+1)*(-x+1))^(1/2
)/(x+1)^(1/2)/(-x+1)^(1/2)*arcsin(x)

________________________________________________________________________________________

maxima [A]  time = 2.97, size = 28, normalized size = 0.58 \begin {gather*} -\frac {1}{3} \, {\left (-x^{2} + 1\right )}^{\frac {3}{2}} + \frac {1}{2} \, \sqrt {-x^{2} + 1} x + \frac {1}{2} \, \arcsin \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)^(1/2)*(1+x)^(3/2),x, algorithm="maxima")

[Out]

-1/3*(-x^2 + 1)^(3/2) + 1/2*sqrt(-x^2 + 1)*x + 1/2*arcsin(x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \sqrt {1-x}\,{\left (x+1\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - x)^(1/2)*(x + 1)^(3/2),x)

[Out]

int((1 - x)^(1/2)*(x + 1)^(3/2), x)

________________________________________________________________________________________

sympy [B]  time = 4.82, size = 165, normalized size = 3.44 \begin {gather*} \begin {cases} - i \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )} + \frac {i \left (x + 1\right )^{\frac {7}{2}}}{3 \sqrt {x - 1}} - \frac {5 i \left (x + 1\right )^{\frac {5}{2}}}{6 \sqrt {x - 1}} - \frac {i \left (x + 1\right )^{\frac {3}{2}}}{6 \sqrt {x - 1}} + \frac {i \sqrt {x + 1}}{\sqrt {x - 1}} & \text {for}\: \frac {\left |{x + 1}\right |}{2} > 1 \\\operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )} - \frac {\left (x + 1\right )^{\frac {7}{2}}}{3 \sqrt {1 - x}} + \frac {5 \left (x + 1\right )^{\frac {5}{2}}}{6 \sqrt {1 - x}} + \frac {\left (x + 1\right )^{\frac {3}{2}}}{6 \sqrt {1 - x}} - \frac {\sqrt {x + 1}}{\sqrt {1 - x}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)**(1/2)*(1+x)**(3/2),x)

[Out]

Piecewise((-I*acosh(sqrt(2)*sqrt(x + 1)/2) + I*(x + 1)**(7/2)/(3*sqrt(x - 1)) - 5*I*(x + 1)**(5/2)/(6*sqrt(x -
 1)) - I*(x + 1)**(3/2)/(6*sqrt(x - 1)) + I*sqrt(x + 1)/sqrt(x - 1), Abs(x + 1)/2 > 1), (asin(sqrt(2)*sqrt(x +
 1)/2) - (x + 1)**(7/2)/(3*sqrt(1 - x)) + 5*(x + 1)**(5/2)/(6*sqrt(1 - x)) + (x + 1)**(3/2)/(6*sqrt(1 - x)) -
sqrt(x + 1)/sqrt(1 - x), True))

________________________________________________________________________________________